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Complete Poincare sections and tangent sets 

H R Dullin7 and A Witrekt 
lnstilut f& Theoretische Physik, Universiliit Bremen, Postfach 330440,28344 Bremen, Germany 

Received 26 June 1995, in final form 25 September 1995 

Abstract. Trying to extend a local  definition^ of a surface of a section, and the corresponding 
Poincar6 map to a global one, one can encounter severe difficulties. We show that global 
transverse sections often do not exist for Hamiltonian systems with two degrees of freedom. As 
a consequence we present a method to generate the so-called W-section, which by construction 
will be intersected by (almost) all orbits. Depending'on the type of tangent set in the surface of 
the section, we distinguish five types of W-sections. The method is i l l u s m d  by a number of 
examples, most notably the qua& potential and the double pendulum. .W-sections can also be 
applied to higher dimensional Hamiltonian systems and to dissipative systems. 

1. Introduction 

Poincare [ I ]  introduced the idea of studying a map instead of the flow in order to show the 
existence of periodic orbits in the restricted three-body problem. His work was completed 
and extended by Birkhoff [2], who initiated the study of smooth area preserving maps in 
[3]. Hinon and Heiles were among the first to obtain pictures of the Poincar.5 surface of a 
section for non-integrable systems by numerically integrating the flow 141. Since then the 
method has become a standard tool for the analysis of nonlinear dynamical systems, and it 
is introduced in most textbooks (see e.g. Guckenheimer and Holmes [SI, Lichtenberg and 
Liebermann [6] or Ozorio de Almeida [7]). 

It is commonly known that a surface~of a section (section in the following) should be 
transverse to the flow. Transversality of a section is indeed a very nice property, because 
the induced Poincar.5 map will be well defined and smooth. We will show that in many 
cases, however, it is impossible to obtain a transverse section for the whole flow. This fact 
has mainly been ignored in the literature, despite the fact that almost all examples of global 
sections for a time-independent Hamiltonian system with two degrees of freedom are not 
transverse. 

The question of how to construct a section in such-a way that the induced Poincar.5 map 
is~well defined and smooth, although the section is not transverse, has already been resolved 
by Birkhoff 121. His essential points are that (i) the non-transverse set has to be invariant 
under the flow, and (ii) the section has to be complete, i.e. (loosely speaking) repeatedly hit 
by every orbit. 
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7158 H R Dullin and A Wittek 

Our construction of a section, which we will call a W-section, because it is generated 
by some function W on phase space, will give a weak form of the second property 
automatically. Sometimes the first property also holds for a W-section, so that most of 
the work of proving the induced Poincar6 map to be smooth is already done. In this 
way a W-section can give a Poincar6 map in the sense of Birkhoff-sometimes it even 
yields a transverse section. A W-section can be used in n dimensions. Nevertheless we 
will formulate our results for two degrees of freedom, and finally comment on the higher 
dimensional case. 

Dealing with systems that, due to symmetries, have explicitly solvable periodic orbits, 
there is a good chance of obtaining a Birkhoff section. If this is not the case, but for practical 
purposes we nevertheless want to obtain an explicitly given section condition, we have to 
sacrifice Birkhoff s first condition, and therefore the smoothness of the induced Po incd  
map. Thus it is necessary to discuss the possible types of discontinuities in a non-transverse 
section in some detail. 

We encourage the use of these non-smooth maps, but insist that the corresponding 
sections should be at least asymptotically complete (to be defined below). Under this 
assumption they can be quite useful in order to obtain a global overview of the dynamics 
(although they might be less useful as a mathematical object, because no fixed point theorems 
etc apply). Using a W-section guarantees the (asymptotic) completeness of the section, 
and therefore the induced Poincark map will be (almost) well defined. Depending on the 
properties of the non-transverse set we distinguish five types of W-sections including the 
ideal (everywhere transverse) and Birkhoff sections. 

Generally we distinguish between the section with its properties and the induced 
Poincar6 map, although this distinction is not always very clear cut. We try to deduce 
properties of the map from the properties of the section. If a section is not complete 
we consider it dangerous to use it. Investigating the return time we suggest a method to 
numerically detect whether a given section is of this unpleasant type. This will be illustrated 
in an example. For all the five better types of sections we also give examples, where we 
always use a W-section. 

A transverse section should always be a smooth and closed submanifold. For cases 
where there does not exist a transverse section, Birkhoff introduced a surface of a section 
as a submanifold with boundaries, which are invariant under the flow. Because we are 
going to discuss sections with a non-transverse set that is nor invariant under the flow we 
prefer to consider the section to always be a closed submanifold. Moreover, we feel that 
the geometric situation in phase space with respect to the energy surface becomes more 
clear by this. When we consider Birkhoff sections we stay with this habit, although it is 
redundant in this case as it gives a duplication of manifolds with boundaries glued together. 

The paper is organized as follows. Following a general introduction to Poincar6 sections 
in section 2, we state conditions such that the section can be transverse and complete. Then 
we show that in important cases it can be impossible to find complete and transverse sections. 
In section 4 we discuss the implications of a non-transverse section for the discontinuities of 
the Poincar6 map. We review the construction by Birkhoff, which assures a smooth Poincar6 
map in spite of non-transversality. Inour general construction of W-sections presented in 
section 5, we obtain completeness almost for free, but might lose the transversality of the 
section and the smoothness of the Poincar6 map. Depending on the properties of the non- 
transverse set in the section, we distinguish five types of W-sections. For each of them 
we discuss an example in section 6. We finally comment on non-Hamiltonian and higher 
dimensional cases. 
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2. Poinear6 sections 

Consider a Hamiltonian system with two degrees of freedom and configuration space 
Q.  We will restrict our attention to time-independent Hamiltonians H(x)  = h defined 
on phase space T*Q.  When necessary we will introduce (local) canonical coordinates 
x = (9 ,  p )  = (41.92, p1, p2). Fixing h to a non-critical value we obtain a vector field 
without singularity on the three-dimensional energy surface 

= [ X  E T " Q ~ H ( x )  = h ]  (1) 

which we assume to be a compact manifold. If it has more than one component each of 
them can be discussed separately. The vector field 5 in a local coordinate system is given 
by Hamilton's equations 

(2) 
The corresponding  flow^ is denoted by @. To reduce the continuous dynamics to a Poincare 
map we introduce a two-dimensional section Ch. with the corresponding Poincare map 
P .  It can always be defined in the neighbourhood of a periodic orbit which intersects Eh 
transversely (see e.g. [8,9,5]) by 

i = (4, p )  = ( a H / a p ,  - a ~ i a q ) .  

P : Ch + Eh 
x H P ( x )  = @ ' ( x )  (3) 

(4) 

with the first return time t 

t ( x )  = min(t E Rlt)O, @*(XI  E Eh). 

In the ideal case we can do this not only locally but for the whole flow such that the 

manifold is a closed submanifold of &h of codimension dne, i.e. a Riemann surface; 
transversality: 5 is everywhere transverse to Ch; 
C-completeness: every orbit starting from Eh has at least one more point in for 

&-completeness: every orbit in &h does intersect ch. 

We will call a section complete if it is C-complete and &-complete. Notice that all 
four items are properties of the section and not of the Poincare map P. The two definitions 
encompass forward and backward time evolution. Our arguments will usually be presented 
only for the positive time direction, but they can easily be translated to the time reversed 
case. 

We will see that in important cases it is impossible to obtain all four propelties. For 
the purpose of obtaining a global overview of the dynamical system, the last two properties 
are the most important. We will suggest a recipe to obtain sections that are complete, but 
which may lack the first two properties. 

In the following we consider only sections E,, which can be defined by an equation 
S ( x )  = 0 (the section condition) on phase space, where S is a smooth function. Denote the 
hypersurface in phase space defined via S by 

(5) 
This definition is most convenient for analytical and numerical purposes, for example, 
Henon's method to obtain the exact intersection of a trajectory and  the^ section 1101 can 
readily be generalized to a section condition as given above by reparametrizing the flow 
with S. The types of section conditions commonly used in~the literature (e.g. q1 = 0) are 
obviously special cases of the above more general form. As we will see later, examples 

following properties hold for the section: 

finite positive and negative times; 

S = {x E T*QlS(x)  = 0) .  
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where S is not a manifold but instead a collection of manifolds, which intersect, arise quite 
naturally for W-sections, when the section condition can be split into factors and each of 
them can become zero. In such cases we have to discuss each manifold, defined by a section 
condition given by one of the factors separately. 

The restriction of the hypersurface S to the energy (hyper)surface Eh gives the two- 
dimensional section 

x h = [ X  E T * Q I H ( X ) = h , S ( X ) = O ) = S n E h .  (6) 
If S is a manifold, then also this surface usually is a manifold, because generically X ( x )  
and S(x )  are independent. If the manifold property is strictly required it should of course 
be checked by verifying rank (VSVH) = 2 on E h .  

Our strategy will be to deduce properties of the Poincad map P from the properties of 
the section. Most notably, we will determine under which conditions P is smooth andlor 
well defined. If P is not smooth we, moreover, classify the possible types of discontinuities. 

Let us briefly consider the question of how to represent & in R2. By definition ' C h  is 
embedded in the four-dimensional phase space. Introducing local coordinate systems, we 
must in principle cover Eh by a collection of charts. In practice one usually tries a projection 
of onto a two-dimensional plane. A natural choice of this plane is one canonical pair 
of the original variables, which yields an area preserving representation of P in R2 if the 
section condition~is qI = constant or pi = constant 1111. The problem is that the projection 
of a closed surface onto a plane is at least twofold. 

Following Birkhoff, one usually considers that part of Eh with S 2 0 (or Q 0) as the 
section. In many examples shown in the literature this approach works and a projection 
onto a canonical plane can be found. Obviously, this method fails if the projection is more 
than twofold. Also, in the following there will be cases where orbits intersect Eh only once, 
either with S z 0 or S < 0. n u s  we prefer to consider Eh as a closed surface instead of 
a surface patch bounded by the set S = 0. The most obvious way to solve this problem is 
not to create it in the first place: instead of projecting & into RZ, it can be mapped into 
R3. This approach will be studied  in^ a forthcoming paper. However, in the examples we 
do use projections to R2, in order to present pictures. 

3. Ideal sections . . . 

Birkhoff found that a necessary and sufficient condition for an ideal section is the existence 
of a global angle coordinate in the energy surface such that the vector field then gives > 0 
(or i 0) always 1121. The section 6 = constant then has all the desired properties, including 
the smoothness of the induced map P. The converse formulation (also for arbitrary non- 
Hamiltonian systems) is that & is the result of a suspension of some given diffeomorphism 
of & onto itself (see e.g. [13,9]). 

Already the requirement that a global angle variable has to exist poses a strict 
requirement on the topology of the energy surface. The topology of Eh must allow for 
the embedding of a two-dimensional Riemann surface Eh such that it does nor divide Eh 
into two parts. If the vector field .$ is transverse to the flow always intersects Ch in 
the same direction. If &, divides &h into two parts the section is obviously not transverse: 
using the direction of the flow there is a notion of the inside and outside of Eh so, if .$ 
is everywhere transverse to Eh,  orbits that enter the inside could never leave it, which is 
impossible for Hamiltonian flows. 

An ideal section is obviously possible if Eh has the structure of a direct product with 
9, the particular cases &h N S' x Sz and Eh _Y SI x TZ N T 3  do occur in mechanical 

' 

~ 
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problems (see Smale [141 for a discussion of the topology of Hamiltonian systems)i. If Eh 

is a direct product S1 x 4, and we are able to introduce an increasing angle, then after 
an appropriate rescaling of time the system has been reduced to one and a half degrees of 
freedom, where the Hamiltonian is driven periodically in time. In the neighbourhood of 
a periodic orbit this procedure is always possible (see e.g. [7]), but we want to require it 
globally, and many flows will not have this property. 

Most examples of ideal section known to us are of the stroboscopic type (see e.g. [5,6]), 
i.e. the vector field depends periodically on time t with period T ,  and the section condition 
is given by (t mod T )  = 0. The Poincark map is then especially simple, because the return 
time ~ ( x )  is independent of x .  

3.1. . . . c m  be impossible 

Continuing the above intuitive argument easily yields the result that there cannot be an ideal 
section for S3 (and of course also not for B', thinking about non-Hamiltonian Rows). It is 
known that every embedded (orientable) Riemann surface %, does divide S3 (R') into two 
parts. Since the energy surface of many Hamiltonian systems for energies slightly above 
the critical energy of a stable equilibrium is S3, this case is of utmost importance. 

For reversible systems the following argument shows that time reversal symmetric 
surfaces of a section which consist of one component are always non-transverse. 

If the Hamiltonian is quadratic in the momenta the system possesses time reversal 
symmetry ( p  + -p) ,  ( t  + -t). If S contains only even powers of the momenta it is also 
invariant under time reversal. A common section condition of this type is S(q)  = 0, i.e. S 
is a function on configuration space only. Let (40, PO) E Ch be an initial condition for the 
solution (q(t), Po)). Because of the symmetry (q(-t), -p(-t)) is also a solution of the 
system. Evaluating S and taking the invariance of S and H into account gives 

which shows that the direction of intersection of the Row with Ch has both signs. Since 
we assume to be a manifold without boundary and one component only, somewhere we 
must have S = 0, and we conclude that the section cannot be transvene. 

Note that defining a section for an integrable system by using action angle variables 
does not allow the introduction of increasing angle variables in the desired form, because 
obviously the topology of the energy surface as well as the vector field defined on €h cannot 
be changed. Moreover, action angle variables can  usually not be introduced globally. They 
only cover parts of phase space where there is a compatible foliation by Liouville tori and 
they become singular on statjle periodic orbits. 

Using more technical arguments from homotopy theory of fibre bundles one can show 
the non-existence of ideal sections for all Hamiltonian systems with two degrees of freedom 
and quadratic kinetic energy except for cases where Eh N SxS2 and Eh N T3.  This wil1 be 
presented in a forthcoming paper. Even if the energy surface has that topology, Birkhoffs 
second condition ($ > 0) is a strong restriction on the flow. Ideal sections are therefore 
exceptional. 

1 Throughout this paper S" denotes the n-dimensional sphere, T" the n-dimensional toms, D L  the interval. DZ 
the disk, and D3 the three-dimensional ball. 
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4. Non-transverse sections 

Let us study the tangent set of z l h  where the Hamiltonian vector field < is not transvcrse to 
Eh.  Since we assume Ch to be a smooth manifold, V H  and VS are linearly independent; 
thus a tangent vector to Ch is orthogonal to both vectors. The Hamiltonian flow is by 
construction orthogonal to V H  so that we can define the tangent set s2 c Eh by 

H R Dullin a d  A Wittek 

Q = ( x  E &IS = vs-: =O]. (8) 

In general s2 is of codimension two with respect to Eh and therefore a one-dimensional 
subset of Ch. If we cross Q transversely on Ch the direction of intersection, i.e. S, changes 
its sign. 

If Q is non-empty, the Poincare map P from E h  onto itself can be discontinuous. 
Consider a part w of Q for which d = VS .: # 0, i.e. which is not invariant under the 
flow. This implies that 5 is transverse to w (it nevertheless is not transverse to Eh). Let us 
denote a small onesided neighbourhood of w in points away from A 
(see figure I ) .  P then maps A to the other side of w. Let us denote the image P ( A )  by B. 
The return time ~ ( x )  for x E A approaches zero if x approaches U. However, initial points 
x E B close to w are carried away from Ch by the flow and they have ~ ( x )  > 0. Therefore 
P is discontinuous along w (see the centre of figure 1). The line w itself is mapped together 
with B in accordance with definition (4). 

Another kind of discontinuity occurs at the pre-image of w. Considering the pre-images 
of A and B the situation is analogous to the above: the pre-image of B is A and the pre- 
image of A, in  general, is some patch of Ch which does not contain a tangent set. Using the 
inverse map, w is mapped with A. Let us now investigate the images of the neighbourhood 
of the pre-image P-'(w),  which consists of P-' (A)  and another patch denoted by C, see 
figure 1. Because of the continuity of the flow, P-'(A) and C do evolve 'side by side' in 
phase space; but C will miss the section at the moment that A first hits it. Therefore P is 
discontinuous along P-' (w) .  However, because of the continuity of the flow the images of 
A and C must join again. Even though the map is discontinuous, most notably KAM ton 
will continue smoothly across w and Its pre-image. In particular, this implies that on the 
computer screen one does not notice this kind of discontinuity of the map. This will be 
demonstrated in one of the examples (see figure 6 later). 

From the numerical point of view the discontinuity does not pose a severe problem, 
since the calculation of P is performed pointwise. Only the determination of intersections 
of orbit segments that are close to the tangent set is susceptible to round off errors. Also the 
reparametrization of the flow with S, in order to find the exact intersection, then becomes 
difficult. The calculation of the linearized map by numerically differentiating the map, i.e. 
by mapping close by trajectories, does become a problem, but this is not the method of 
choice anyhow. If instead the variational equation is integrated along the given orbit, the 
problems in determining the stability vanish. In applying Newtons method to find periodic 
orbits using the Poincard map, care has to be taken in order to avoid a crossing of the 
pre-image of Q. This can be achieved by monitoring r ( x ) .  

From the analytical point of view we would like to construct smooth maps. We have 
seen that discontinuities occur if is transverse to Q. If on the contrary $ is tangential to 
'2, it is possible to obtain a smooth map. 

Let us define A c f2 as being the subset of Q which is invariant under the flow CP, i.e. 

(9) 

by A such that 

A = ( x  E Q [ W ( x )  E C2 VI]. 
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Figure 1. The properties of the Poincark map in the neighbourhood of a part of the tangent set 
P which is not invdant under the flow. (a) The initial sets A and B = P ( A )  close to S l  are 
indicated in the second coiumn. Each row represents the same part of the section, while each 
column shows a different iteration step of the sets A and B .  The projection of the vector field F 
onto the section points into B on 0. In the third coiumn the images P(A) and P(B) are shown. 
If one restricts attention to the pan of %, with the same sign of S as in E ,  this discontinuity of P 
disappears because A = P-' (8)  has the opposite sign, but there always is a discontinuity along 
the pre-image of 0, indicated in the first column (a 'real' picture of this singularity is shown in 
figure 6). (b)  The same situation as in (a) viewed 'from the side'. Instead of looking onto the 
tangent set 0 in Zh a cross section of Ch together with the flow, indicating the tangency at P, 
is shown. 

For practical purposes we can rephrase the definition: 

(10) 

Obviously, n = 0 implies A c Ch and for n Q 1 we find A c Q. Generically, for n Q 2 
A should be of codimension three with respect to the energy surface, i.e. points, while also 
requiring the third derivate to vanish we would get an empty set. Therefore the vanishing 
of the second derivate on a line in s2 is already a strong indication of the existence of an 
invariant tangent set. Nevertheless, one should verify that trajectories starting in A stay in 
the surface of section. As we will see in the next section, A will be composed of periodic 
orbits of a. Let us consider the neighbourhood in &h of a periodic orbit in A, in order to 
determine its impact on completeness. 

d"S 
A = { x  E €hI-=O,n E N ) .  

dt" 
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Stable periodic orbits in A are almost always nice in the sense that they are not an 
obstacle to completeness. Neighbouring orbits wind around the periodic orbit. Only in rare 
cases is the winding number of the periodic orbit zero when measured with respect to the 
section. We exclude this case in the following. In all other cases every neighbouring orbit 
will intersect the section; we will call these periodic orbits ‘winding’. 

Unstable periodic orbits in A can cause problems if their local invariant manifolds are 
not winding with respect to the section. In this case orbits can approach the section along 
the stable manifold and they will not produce an intersection in finite time: the section is 
not E-complete or not &-complete or neither. These periodic orbits will be called ‘non- 
winding’. If the unstable periodic orbit has non-orientable local invariant manifolds, i.e. it 
is hyperbolic with reflection, the orbit is winding because the section is orientable. 

Note that if we have a non-winding unstable orbit in A there can be another type of 
discontinuity in P. If the stable invariant manifold does intersect E h  in some place (by 
assumption it does not intersect close to the periodic orbit) P will be discontinuous at this 
line, and the return time r approaches CO close to it. If the stable manifold does not intersect 
&, at all, & is not &-complete. Conversely, if there are only winding stable or unstable 
orbits in A and A = Q, P can be smooth. 

Let us introduce two weaker notions replacin,. completeness. A section is called 
Em-complete if every orbit starting in & which does not return in finite time, has a 

Em-complete if every orbit in &h which does not reach Eh in finite time, has a t  + kc0 

We will call a section asymptotically complete, if it has both properties. 
With these definitions we can summarize the facts about the different types of 

singularities in the Poincart map. 
(i) If o = (Q\A) # 0 there is a discontinuity along o and P-’(w).  Restricting the 

section to the part of with one sign of S removes the singularity at w. The singularity 
at P-’(w) can of course not be removed and it is characterized by a finite jump in r (see 
figure 1). 

(ii) If there are non-winding unstable orbits in A the section is at most Em-complete. 
There is a discontinuity in P where r + CO. We consider P as ‘almost well defined‘ if the 
section is Em-complete and &m-complete. 

(iii) There can be an especially bad third kind of singularity if Eh is not even Em- 
complete because there might exist unstable periodic orbits that have no points at all in &, 
with stable manifolds which do intersect with Eh. Again we find r + 03. 

The construction of W-sections in the next section will avoid this last type of singularity, 
which might lead to a fractal set of singularities in P (see figure 4 later for an example). 

Birkhoff [2] showed that a necessaiy condition to obtain a smooth Poincart map in the 
non-transverse case is Q = A, i.e. the non-transversality is concentrated in the invariant 
set. He defined a section to be (i) complete, (ii) (if not ideal) with a finite number of 
boundaries which are invariant under the flow, and (iii) bounded in such a way that the 
angle of intersection of 5 and Eh goes linearly to zero when approaching A on Eh. The 
third condition is needed in order to define a return time r (x)  for x E A, because the simple 
definition (4) does not work, since the orbit never leaves Ch. As a result of this definition 
Birkhoff showed that the induced Poincar6 map is smooth and can be smoothly extended 
onto the invariant tangent set. Moreover, he proved that, for certain systems, sections with 
all of the above properties do exist in principle. As Siege1 and Moser remark in [ll], it 
is the existence of invariant boundaries which makes a fixed-point theorem possible in the 
non-transverse case. 

t + &CO limit set in E h ;  

limit set in E h .  
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If the Hamiltonian system permits the explicit solution for a periodic orbit, usually due 
to symmetry, one might be able to construct a section according to Birkhoffs definition, 
such that the section condition can be given in simple explicit form. The main difficulty is 
to prove completeness. The method of W-sections introduced in the next section is a tool 
with which one can do this. 

In general, the problem with Birkhoff's construction is that one needs to know about 
the periodic orbits in order to choose the section condition, while in practice one wants to 
construct a section in order to learn about the periodic orbits. Since our main goal is to 
conshUct complete sections, we will allow for the non-invariance of the tangent set. 

5. Complete sections 

As a general method for constructing a section for bounded Hamiltonian systems we suggest 
one makes use of the idea of Lorenz [15], to take the extrema of a bounded quantity as a 
section condition. We are not aware of an extension of his idea to the study of Hamiltonian 
systems. Consider an smooth function W on phase space which maps Eh to an interval D' 

W(&) = D' c R W(&) f 0. (11) 
Let us choose as a section condition 

S&) = W ( x )  = 0 
and call the corresponding section E,. W can be thought of as a continuous signal of the 
system that 'generates' the section. 

Under the assumption that W(x) and the vector field 5 are analytic on Eh we obtain the 
following theorem which is independent of the number of degrees of freedom. 

Theorem 1. 

ProoJ Consider a trajectory @'(x) .  From the assumptions it follows that W(@'(x ) )  is 
also analytic and bounded. Looking at the behaviour of the signal W ( W ( x ) )  as time goes 
to fw the assumptions only allow for the following behaviour concerning extremal points 
(compare with figure 2(a)): 

A W-section is an at least asymptotically complete section 

(A) W(W(x)) repeatedly passes through extremal points; 
(B) W(W(x)) is constant, which implies that W(W(x)) = constant for all times t ,  and 

(C) W(W (x)) is asymptotically approaching some constant value in a monotonic way. 
We now interpret the behaviour of the signal in terms of the dynamical system and the 

section E,. Let us denote the sets of trajectories which generate the above signals by A, 
23, and C. 

(A) Set A does not pose a problem in terms of completeness of a W-section, because 
the signals repeatedly pass through extrema and the trajectories therefore intersects X, an 
infinite number of times. This is the generic behaviour of trajectories because we required 

we have W(W(x)) 0; 

W ( & h )  $ 0. 
(B) Set B by definition represents all orbits which are in E,, i.e. B = A. 
(C) Set C consists of trajectories which are asymptotic to some iso-surface W, = 

[x[W(x) = c )  or some subset of this surface. Since Eh is compact the limit set r of Of(x) 
exists and since W(@'(x)) --f c we have r ~2 W,. Of course by definition we also have 
r c A. 

Since Eh = A U B U C a W-section is complete if C = 0 and asymptotically complete 
otherwise. 0 
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--- -._ 

Figure 2. (a) Types of signals for a function W: the full curve shows the generic case of a 
signal. which repmedly has extTema; the dashed curve indicates the signal of an orbit which 
lies entirely in the section; and the dotted curve shows the signal of an orbit asymptotic io the 
previous one in forward time. (b) The schematic signal of homo and hetemclinic motion: the 
two dashed curves represent unstable periodic orbits which lie entirely in the section; heterocliic 
motion an be identified 3s the dotted curve while the remaining curve stands for homoclinic 
motion. Notice that the sketch represents worst case, non-winding periodic orbits. The approach 
to a winding orbit would give a signal which oscillates an infinite number of times around its 
final value. 

CoroUary 1. If A = 0.the W-section is complete. 

Pro05 Because C is asymptotic to B, C must be empty if B is empty. 0 

If A contains only invariant sets which are not limit sets (except for the Corollary 2. 
members of the set themselves), then the W-section is complete. 

Proof. The limit set of C is in B, but B does not contain limit sets, so C is empty. 0 

Corollary 3. The W-sections for 2 degree of freedom systems can be classified by the 
tangent set Q and its invariant component A as follows: 

(i) Q = 0, the W-section is ideal; 
(ii) Q # 0 and Q = A and A does not contain non-winding periodic orbits, the W- 

(iii) Q # A and A does not contain non-winding orbits, the W-section is complete; 
(iv) Q # A and A contains one non-winding unstable periodic orbit, the section is 

(v) Q # A and A contains more than one non-winding unstable periodic orbit, the 

section is a Birkhoff section if the linearity condition holds; 

&-complete and Em-complete: 

section is Em-complete and at least Em-complete. 

Pmof. Case (i) is obvious, because Q = 0 gives the transversality and from corollary 1 
we obtain the completeness. To obtain the other cases we show that A can only contain 
periodic orbits. The only invariant sets embeddable in any surface W, are two-tori or 
periodic orbits. The case when two-ton are found in A is exceptional. In an integrable 
system this would either imply that we had chosen W to be a constant of motion (which 
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we explicitly excluded in our definition (ll)), or we would have the same situation as in 
the non-integrable case: E,,, would necessarily be a set of surfaces, one of them being a 
KAM torus (otherwise all of the energy surface would have to asymptotically approach that 
toms, which is obviously impossible). Accidently, describing a KAM torus by an equation 
W = 0 is highly improbable, and, in any case, we would not lose trajectories. We now 
restrict attention to the components of E,,, that are not KAM tori. 

Therefore the only invariant sets in A can be periodic orbits. We already noted in the 
last section that the section is complete if there are no non-winding orbits in A, and from 
this we obtain (ii) and (iii). If there are non-winding unstable orbits in A the section cannot 
be X-complete. The first intersection of the stable manifold of such an orbit with 8, is a 
line. Orbits starting OR this line do not retum in finite time. If the two lines of the first 
intersection of the stable and unstable manifold of the same orbit intersect in X,, there is 
a special homoclinic orbit as shown in figure 2(b), which intersects the section only once. 
Because this is the worst case, the section (iv) is still &-complete. 

Only certain heteroclinic orbits are an obstacle for the W-section to be &-complete; 
Their t + fco limit sets are in A, and the generated signals are monotonic, see figure 2(b). 
Obviously there must be at least two non-winding unstable orbits in A for this to be possible, 

That, indeed, all these cases can occur will be shown in the examples. In addition 
there will be examples of what can go wrong if we do not choose a section which ensures 
(asymptotic) completeness like a W-section does. 

If A = 0 we automatically have a complete section. An important observation is 
that this property can be checked purely locally, i.e. we do not need to know anything 
about the solutions of our differential equation. Usually this is achieved by verifying that 
s(n) + 0 on n. By a suitable choice of W we can achieve A = 0 and thus avoid possible 
problems with non-winding periodic orbits. This can usually be accomplished by choosing 
a function W such that W does not respect symmetries of the system. The determination 
of the properties of periodic orbits in A is much harder, because it requires the solution of 
differential equations. 

Before passing to the examples, notice that a W-section is set up independently of the 
topology of the energy surface and of the accessible configuration space Qh,  which, in 
general, both change with a change in the energy or some other parameters. We, therefore, 
do not have to reconsider the definition of the section. Also we find that a change in 
the topology of the energy surface is reflected in a change of the topology of the section, 
because by definition an equilibrium point x' will be in Em (we have W ( x ' )  = O!) and 
also this surface has a singularity (rank (VS, VN)I,.  < 2). 

which yields case (v). 0 

6. Standard W-sections and examples 

For a standard Hamiltonian H = T +  V with a positive definite kinetic energy T of quadratic 
form and potential V ( q ) .  there are a number of standard choices for W: 
zero-force 
zero-velocity 

equipotential 

w = p t .  s = w = p ,  = ~ o  
w = qi , s = W = qi = o (only if qi is not an angle!) 
w = v i ,  s = w = Iji = qi = 0 
w = v,s = W =  v = - f = O  

zero-acceleration 

The first two just amount to taking the zeroes of one component of the right-hand side of 
Hamilton's equations as a section condition; the third one arises naturally if we consider the 
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second-order Euler-Lagrange equations. In the last case the projection of the trajectory into 
the configuration space is a tangent to an equipotential line at the moment of intersection. 
The zero-acceleration section can only give new results if the kinetic energy is non-trivial. 
Note that taking the zeroes of the right-hand side of a differential equation as a section 
condition is reminiscent of the method of zero-isoclines, which graphically locates fixed 
points in two-dimensional flows. 

If T does not depend on q. the zero-force section gives a section condition purely in 
configuration space: S(q) = p i  = -aV/aqi - V ,  = 0. In this case a projection of 
parts of E, with 3 > 0 or < 0 to the symplectic coordinate plane (qj, pj ) ,  i # j can 
give a representation in R2. However, in many cases this projection will not be invertible. 
Choosing coordinates on Zw is a non-trivial problem for many zero-force sections. In the 
ideal case one can introduce V, as a new coordinate e;, such that the projection to (Qj. Pj) 
gives an area preserving representation in R2 (see the examples). 

Zero-velocity and equipotential sections are linear in the momenta for standard 
Hamiltonians. Therefore p can be determined if the potential energy is given, and there 
are at most two solutions. The projection of C ,  onto configuration space is. therefore, a 
double covering. This projection of Ch neither gives an area preserving representation of 
the Poincar6 map in E@, nor is its boundary (if it exists) the tangent set. It has the advantage, 
however, that it is easily obtained, and often, therefore, might be the first choice. 

H R Dullin and A Wittek 

6.1. Ideal sections 

One example for an ideal section is provided by the motion of a charged particle in a 
doubly-periodic magnetic field B(x ,  y ) ~  of constant sign, which was suggested by Birkhoff 
[Z]. Here we use a W-section to obtain the result, and extend it by the addition of a non- 
constant potential. Due to the periodicity of B ,  configuration space can be considered to 
be a two-torus T 2  and therefore EA = T3. Introducing the vector potential A(x,  y) the 
Lagrangian reads 

with a constant potential V,. In the present problem it is more convenient to use the 
Euler-Lagrange equations 

i = -B(x ,  ~ ) y  j = B(x,  y)X (14) 

instead of Hamilton's equations. Let us, therefore, consider the zero-acceleration section 
S = f = - B ( x ,  y)y = 0. Since B has constant sign by assumption, the section condition 
is only fulfilled if 9 = 0. The tangent set is given by y = B(x,  y)f = 0 on E,, but because 
of energy conservation the kinetic energy 2(h - VQ) is always positive, i.e. f2 > 0 on Ew, 
and, therefore, the tangent set is empty and the flow is everywhere transverse to E,. 

Since the section is defined in velocity space and the kinetic energy never vanishes, the 
connected components of E, have the same topoIogy as configuration space. The equation 
f2 = 2(h - VO) gives two non-zero solutions for f for every point in configuration space 
T2.  Therefore Zw consists of two T 2 .  one with f > 0 and the other one with .i < 0. Since 
for the angle q5 = arctan(y/x) in velocity space we find that 6 = B is of constant sign, it 
is sufficient to consider, for example, the T2 with i =- 0 as a section. If a W-section yields 
an ideal section, it necessarily has at least two disjoint components, because the sign of S, 
which indicates maxima and minima of the signal, alternates. 
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If a small periodic potential V(x, y )  is introduced, we take W = .i/m instead 
of just W = X and obtain 

as our section condition. We assume h > V , ,  so that we always have X z  t y Z  > 0. In 
order to reduce the section condition to S = j = 0 alone as before, we fufiermore require 
that 

j . i - x y = - B ( ~ * + y 2 ) + ( - X V y + ~ V X ) # O +  
(16) 

IB[(X2+yz) z I-av,+yv,l. 
A sufficient condition for the above.inequality to hold is 

[ B [ ( X z + y 2 ) > ~ l V V 1 9  

[ E l d m  > lVV[ + . (17) 
This gives the following condition for h: 

If the last condition holds, we can set S = y and the tangent set is given by y = -EX- V, = 
0 on E,. The tangent set is empty if h > V,2/2B2 + V, which is satisfied because already 
(18) holds. If this condition is violated, the section becomes non-transverse, and eventually 
for sufficiently small h and/or B also not E-complete: since y is an angle, the section 
condition y = 0 will miss the rotating motion (or thinking of the original system as living 
on Rz, the motion with ever increasing y). 

6.2. Birkhoff sectionr 

We obtain examples of Birkhoff sections as a complete W-section with invariant tangent 
sets. The following example is again due to Birkhoff [2], and we discuss a special case, 
namely the well known Hinon-Heiles system [4]: 

H = f(g,2 + p; ,  + f(x’ + Y Z )  + x 2 y  - f y 3 .  (19) 

If the energy is restricted to the range (0, i ) ,  the dynamics is bounded and Eh = S3. A 
zero-force section in x gives 

S = p x  = x(1 + 2y) = 0 (20) 
where the second factor is always  positive^ because for the above energy range we find 
y E (-;, 1). Therefore x = 0 is a good section condition. The tangent set S2 is given by 
x = px = 0, describing a stable periodic orbit which moves along the y axis. The tangent 
set is invariant because 3 = f = p x  = 0 is automatically fulfilIed on S2. On the section 
x = 0 the y coordinate varies on an interval. For every interior point of this interval the 
allowed momenta are given by a circle, while for the endpoints of this interval the circle 
collapses to a.point, i.e. the momenta must be zero. Combining all these circles along the 
interval we find that C, 2 Sz. Cutting this sphere along the invariant tangent set and 
projecting one half with a constant sign of S 2 pr onto the canonical plane (y, p y )  we 
obtain the section of HBnon and Heiles. Note that the zero-velocity section S = x = p x  = 0 
gives a different section which nevertheless has the same invariant tangent set. 

This construction works for all bounded potentials with similar properties. Following 
Bkkhoff [Z] we assume a Hamiltonian of the above.form with a potential that has a straight 
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line (which we choose to be the y axis) on which a V / a x  = V, = 0 holds, and for which V, 
and x have equal sign. Then the same construction can be used to obtain a section which 
is complete and where P is smooth. Another famous example of this type is the hydrogen 
atom in a magnetic field, see [16] and the reference therein. In this system the orbit in 
the invariant tangent set can become inverse hyperbolic under parameter variation, but the 
section nevertheless stays complete and smooth. 

I I I 
-2 -1 0 1 2 

Figure 3. The equipotential lines V = -0.5.0.0.5. I .  1.5 for a = I, E = f in (22). In the 
integrable case E = 0 there are two smble periodic orbits parallel to the y axis crossing the 
minima at yf = -&, xf = = / ( I  - 22) .  The critical energy of the minima is a2/(8s2 - 4). 
for the saddle point at the origin it is 0. The unstable orbit crossing the saddle moves on the 
y axis for all values of E.  It is also port of the tangent set of the section f = 0. There are 
homoclinic orbits associated with this orbit that intersect the section only once and then approach 
the invariant part of the tangent set fort  + &CO. 

Yet another well known example, where a Birkhoff section can be established, is the 
quartic potential 

which has been discussed by e.g. Carnegie and Percival [17] and Eckhardt eta1 [MI, who 
were mainly interested in the limiting behaviour y + -1 (b = I), and Bohigas er a! 
1191. who introduced the anisotropy b and discussed a parameter variation -1 c y -= 0 
(b = a/4). The latter discussion will be reconsidered as the last example. Carnegie, as well 
as Eckhardt, used x = 0 as a section condition, which in our terms is incomplete because 
there are unstable orbits which never cross the section. Also the tangent set consists of anon- 
winding unstable periodic orbit. Therefore, there should be serious kinds of discontinuities 
in the return time as discussed earlier. A~simple possibility of avoiding these problems is 
to consider the transformed system with x = f - F and y = f + j ;  and choose a section 
condition f = 0 as already suggested in [17]. It is easily seen that this section is of Birkhoff 
type (provided y c 0 and b = 1). 
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6.3. Asymptotically complete W-sections 

In this and the .next example we present the worst cases that can occur for a W-section. 
The tangent set contains one or more unstable penodic orbits whose invariant manifolds do 
not intersect Cw in the immediate neighbourhood of the orbit. For E = 0 both systems are 
integrable. 

The first system considered is given by a Hamiltonian H = p2 /2 .+  V with potential 
(see figure 3) 

v = ;(x4/2 - 
v, = X(X* - a  + 2EY). 

+ y?)  + Exzy 

For e2 < 4 the motion is bounded for every h .  For a2/(2&' - 1) c 4h < 0 the 
accessible region in configuration space Qh has the topology of two discs; for h > 0 we 
have Qh N D2 and Eh Y S'. We restrict our attention to the latter case, because then 
there exists an unstable periodic orbit on the y axis. Consider the zerevelocity section 
S = i = p x  = 0. The tangent set is given by V, = 0. Note the change of interpretation 
of V,. For the zero-force section p x  = 0 of the last example it gives the section condition 
in configuration space, while for a zero-velocity section it gives the tangent set in C,. 
Nevertheless, the (unstable) periodic orbit on the y axis (for h > 0) is part of the tangent 
set for both sections. Therefore we can have orbits which only asymptotically reach the 
section, and it is  only Cm-complete. Since every homoclinic orbit must have a turning 
point with px  = 0, the section is €-complete. 

If we take the obviously bad section condition x = 0, we have an invariant tangent 
set, but the section is neither €-complete nor C-complete. For E not too large there are 
stable periodic orbits crossing the minima of the double well around x = &a. They never 
intersect x = 0 so that the section is not %-complete. We are missing a set of orbits with 
positive measure. Moreover, there will be a set in & which approaches part of the set of 
orbits that do not hit the section. We can picture this situation as a scattering experiment 
which tries to explore the dynamics around the minima of the double well while sitting on 
the saddle in between. From chaotic scattering [20,21] we expect to have a fractal set of 
singularities in the map. This is indeed the case, as is illustrated in figure 4. Note that also 
in the integrable case E = 0.this section is very bad, even though it looks quite nice. The 
tangent set again is invariant and the map is even smooth on &,\A. Cases like this, where 
the invariant manifolds of an unstable orbit in the tangent set do not meet the section at 
all, can only OCCUT in integrable systems. The present example was constructed in order 
to make these possibilities obvious. In this, and in more complicated systems, the use of 
W-sections can avoid these problems. 

The potential in the following example is constructed by the same principle as in the 
last one, except that it has three minima and two saddles (see figure 5): 

~ ( ~ , ~ ~ = ~ 6 - z ~ 4 + ~ ~ + ~ ~ + ~ ~ ~ ( ~ ~ -  I )  (24) 
v, = ( 3 2  - 1)(2x3 - 2x + E y ) .  (25) 

For E' < 4 the motion is bounded. We restrict our attention to energies above the saddle 
energy (h  > (4 - &/27), so that Q h  2: D2 and N S3, There exist two unstable periodic 
orbits crossing the saddle points which are parallel to the y axis at x = &I/& If we 
again choose the zero-velocity section S = i = pr  = 0, both unstable orbits are part of the 
tangent set. For small E there are heteroclinic orbits, connecting the two saddles, that only 
meet p x  = 0 in their limit set. Thus this W-section is only &"-complete. 
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Figure 4. The bad section ( x  = 0) with i I 0 in its projection to the ( y ,  pv)-plane for the 
Hamiltonian with potential (22) and E = 0.1, a = I and h = I .  The outer boundary is the 
invariant tangent set. which consisls of an unstable non-winding periodic orbit. Although the 
Poincari map in (U) looks quite nice, the plot of the return time r(x) in ( b )  reveals that there 
is a fractal set of singularities in T. Dark grey areas correspond to large return time. In part ( c )  
the  m u m  time i is platted as B function of y with p v  = 0 in the section. The enlargements 
show the fracIcwI nature of the ringularily scl. For E = 0.1 there are stable orbits (and therefore 
a set of orbits with positive measure) i n  Eh which do not intersect the section (see figure 6). 
If there were only unstable orbits missing. the fractal singularity set would still erisl. only its 
scaling properties would be changed. 

6.4. Complete W-sections 

Note that in the last two examples we chose an unsuitable section condition in order to 
illustrate what might go wrong. For both potentials a much better choice is S = py = 
-V, = 0. In the integrable case E = 0 this gives a Birkhoff section, because the tangent 
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Figure 5. The equipotential lines 27V = 0.5.2,3.75.6,8 for E = 1: in (24). In the integrable 
case P = 0 there are three stable periodic orbits parallel to the y axis crossing the minima 
at x = 0, +I  on the x axis. The potential minima ace 0. while the saddle points have 
V = (4 - e2)/27. The perturbation is chosen in such a way that the two unstable orbits 
crossing the saddles at xo = +I/&, &yo = a 1 3  keep moving parallel to the y axis if E # 0. 
These orbits are p m  of the tangent set of the section i = 0. There are hereroclinic orbits 
connening them that do not intersect the section but only approach the invariant part of the 
tangent set for I -t fm. 

set consists of the elliptic periodic orbit y = 0. The section condition can be interpreted 
as cutting the angle of the action-angle variables for the y motion. Note that this kind of 
action-angle variable section condition always gives sections with invariant tangent sets. 
However, as already noted, they cannot be transverse everywhere. Moreover, often action- 
angle variables cannot be introduced globally by a smooth transformation, and therefore 
yield a collection of sections. The difference between the section y = 0 and Q = 0 is 
that the latter gives as disk Ch (bounded by the invariant set), while the former gives S2 
(divided into two disks by the invariant set). This difference is created by the singularity 
in the action-angle variables. 

In the non-integrable case the section p y  = 0 is complete. Because the tangent set is not 
invariant for & z 0, there are discontinuities in P where 5 has a finite jump, as illustrated 
in figure 6. It is quite typical that a W-section which is a Birkhoff section in the integrable 
case becomes complete but non-smooth if the perturbation is turned on, because a generic 
perturbation will destroy the invariance of 0. 

As mentioned above, Birkhoff gave a condition for a potential such that a section in 
his sense exists. We now present an extension of this construction which yields a complete 
W-section for potentials with the following property: there exists a straight line, which we 
again assume to be the y axis. such that V V  n has the same sign as x ,  where n is a 
constant vector with a positive x-component. If n = (1 ,O)  we reobtain Birkhoff s original 
discussion. We now choose 

W = p . n  W = j . n  = -VV .n. (26) 
By assumption W will only be zero on the y axis and we can, therefore, choose S = x = 0 
as a section condition. The tangent set is given by i = pr = 0, which in general is not 
invariant because p x  = - V, # 0. As an example we want to reconsider the quartic potential 
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Figure 6. The W-section fir = 0 for (22) with E = 0.1. L( = I and h = 1. After a 
canonical point transformation Y = V ,  = y + E X ' ,  X = X. the projection of Xu, onto the 
plane (X. P x )  = ( x .  pI - Z E I P , )  with jiv > 0 gives n cmmical representation of P on R' 
which i s  used hem. In ( U )  some orbits of the Poincart! map P are shown. In ( b )  the retum 
time r i s  illustrated. Dark grey area5 correspond to large return times. The maximum mum 
time i s  % 10, i.e. the section is X-complete. Because the tanscent set (which corresponds to 
the boundiiry of the shown projection of Xi,,) i s  not invariant. P is discontinuous along the 
pre-image of n. M can hc s e w  in the upper right and in the lower left pm of (b), where there 
i s  n jump in the grey scale. Although P i s  discontinuous. invariant tan intersecting the section 
continue smoothly across the discontinuity 85 can be seen in (a). The two islands embedded in 
the chaotic sea correspond to the stable orbits that are lost i n  the incomplete Section shown in 
figwe 4. 
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(21) in the form of Bohigas et a1 (b = n/4, -1 e y < 0) [19]. They were aware of the 
difficulties mentioned earlier and chose to consider the section condition S = x y  = 0, i.e. 
n = 0 as well as y = 0, which together form a complete section. If one wants to use 
one manifold as a section one can again rotate the coordinate system-this time by an 
angle of tanzO = I / b  instead of z/4 for b = 1. In this coordinate system the potential 
has the properties mentioned above and therefore S = i results in a complete section. 
Depending on the parameter b; one can do better for a certain range of y .  A rotation 
of the coordinate system by mn2e = (1 - yb)/(b(b - y ) )  yields a Birkhoff section if 
(b2 + 1 - Jb4 + 14bZ + 1)/2b < y ~ ~ 0 . ~  

As a last illustrative example for constructing a complete section we choose the double 
pendulum [22]. It is very simple as a physical system but nevertheless it is more complicated 
from a topological and dynamical point of view than the systems discussed so far. Without 
actually producing Poincart sections on the computer we construct a complete W-section 
and show how it changes when the topology of the energy surface changes. By way of this 
example, we show that the use of W-sections is a general procedure which also works for 
systems with non-trivial topology. 

We will adopt the notation from 1231 

where a$ > E' and we assume y~ > y2. The configuration space is T2. The potential is 
shown in figure 7. 

There are four critical energies corresponding to the four equilibrium points (41, &) = 
(0, 0), (0, n), (a, 0), and (n, a). We denote the corresponding critical energies by ho = 0, 
hl = Zyz, hz = 2y1, and h3 = 2(y1 + M). The accessible region of configuration space 
Qh is determined hy setting V =,h. We denote it by Qt for hi-l e h e hi and find, by 
inspecting figure 7, Qo = 0, QI  k Dz,  Qz S' x D ' ,  Q 3  2 TZ\D2 (a torus with a disk 
removed) and Q4 2: T 2  (with h-l = -w, hh = m). Using Smale's construction for the 
energy surface [14] we find &hi = 5''. &hi = sz x SI, = ~3 (= SI x s2#S x s2), and 

Since Ci can rotate, & = 0 is not a W-section, at least not for h > hz. If we instead 
take W = 1 - cos 41, which amounts to measuring the y coordinate of a point on the inner 
pendulum, this signal will obviously have an infinite number of extrema~for almost every 
trajectory. The section condition now becomes 

3 Ehn = T . 

~ Z u  is not a smooth manifold in this case. It consists of three manifolds C,, Eo and &, 
corresponding to Si = $1 = 0, So = 41 = 0, and S, = 41 = n, of which Xi and EO, and 
& and Ex, respectively, intersect in phase space. 

For h e hz the inner pendulum cannot turn over. Therefore CI maps &k to an interval 
and St by itself is a W-section. For higher energies we additionally have to consider So (or 
S,), because otherwise we would miss the rotating motion. It is not necessary to consider 
both SO and S,, because if $51 is rotating it is caught by either one, and if it is not rotating 
it is caught by Si. 

Depending on the energy range hi-1 < h < hi we denote the corresponding section by 
&i and &i, respectively. Eli is a double covering of Qi because for every point in Qi 
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there are two values for h. For h < hz the inner pendulum cannot reach K and therefore 
Cnl =~Cx2 = 0. In the third range & can vary on an interval if 41 = I is fixed and for 
h > h3 we of course find 4 2  E St. Collecting these results gives the following table (where 
R: denotes a Riemann surface of genus 2): 
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1 2 3 4 
0 (0,hi) (h1,hz) h h 3 )  > h3 

Qi I D2 S ' x D '  T2\D2 T2 
&!, , S3 Sz x SI K3 T' 

We choose to project C, onto the cylinder (&, p z ) ,  which we picture on a plane with 
periodic boundary conditions in @2. We obtain a double cover of a region in this plane, 
because the equation H = h is quadratic in p1. At the boundary of this region the two 
solutions for p1 collapse onto each other. The mapping in ($2. p z )  is area preserving. 
Calculating the boundary of the projection of C, onto the plane gives 

p: = 2(h - V(n, 42)) det M/cr (32) 
which coincides with the tangent set Q, which is not invariant under the flow (A = 0). 
Pictures of CO, which are constructed by the same procedure can be found in 1221. 

phi2 

Figure 7. The equipotential lines V = O S ,  1 .2 .3 .4 .5  for the mathematical double pendulum. 
i.e. a = 2. ,9 = 1, y~ = 2, M = I in (28). The critical energies correspond to the origin (h = 0). 
the cusps on the h axis (h  = Z), the cusps on the )I axis (h = 4) and the four comers of 
the picture (h = 6). which are identified to one point on the toms. Because the kinetic energy 
depends non-trivially on y. there are no periodic orbits along the symmetry lines of the potential. 

The section condition Sl = 0 is linear in the momenta. Projecting CI onto configuration 
space gives Qh. For every interior point of Q h  there are two possible momenta while for 
a point in 8Qh the two solutions collapse. The boundary of this projection as given by 
V(&, 42) = h does not coincide with Q. The tangent set of Et can be described by a 
fourth-order polynomial in cos & and p i .  Except for the integrable case without potential 
(or equivalently h -+ CO), it turns out not to be invariant under the flow. 
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As a result of the foregoing discussion we conclude that the Poincari section ~ = 
$1 sin41 for the double pendulum is complete, but not transverse and for h > hz it 
is not a smooth manifold. Similarly, one can construct a W-section by considering 
W = cos(@z - el) .  W = -(& - &)sin(& - $1) generates a complete section. A 
section condition like & =:dl 17.41 is not complete, because there exist unstable periodic 
orbits for which the double pendulum rotates close to the folded configuration, i.e. with 
& - 41 % R. Most notably this section does not even contain some of the equilibrium 
points, which should always be taken as an indication of the incompleteness of the section. 
The reduction of one pendulum to action angle variables in the limit E << q5 as described 
in [25] shows that in this limit the section 41 = 0 is complete. But this argument based on 
pertirbation theory is valid only far away from the ‘mathematical double pendulum’ 1241 
with o( = 2, @ = 1, y1 = 2, yz = 1, and E = 1. 

7. Generalizations 

We have restricted our attention to Hamiltonian systems with two degrees of freedom, since 
on the one band &A is topologically more interesting than P3 (for dissipative flows) and 
on the other hand they are simple enough because the invariant sets in A are just periodic 
orbits. In principle the discussion also applies to higher-dimensional Hamiltonian systems 
and to non-Hamiltonian flows on orientable manifolds. 

7.1. Higher dimensions 

The basic idea of the construction of complete W-sections works for any number of degrees 
of freedoms of the Hamiltonian as the proof of the theorem, which makes no assumptions 
about the dimensionality, shows. Take the vanishing of the derivative of a compact function 
as a section condition and show that the assumptions of corollaries 1 or 2 are fulfilled. 

CoroIIary 3 cannot be transferred as easily. First of all, one must generaIize the notion 
of winding. A more serious problem is that invariant sets that live on higher than two- 
dimensional surfaces Ch can be very complicated, while for the case studied above they can 
only be composed of periodic orbits. Birkhoff sections are difficultlimpossible to obtain, 
because one needs invariant subspaces of codimension three in phase’ space. The most 
promising approach to constructing a W-section, therefore, is to choose a function W such 
as to avoid invariant tangent sets. This should easily be possible and the section then’ is 
necessarily complete. 

If the Hamiltonian system is described by a Poisson structure with k Casimir. constants 
Ci such that the phase space ‘P has dimension k+4, the above analysis his to be modified a 
little, in order to take care of the Casimir constants. For example, the section is now given 

.. by 

(33) 
, , .  & = (X E P[ H = h, S = 0, Ci = ci, i = 1, . . . , k ) .  

In order to find out whether & is a manifold the rank of the (k -I- 2) x (k  f 4 )  Jacobian has 
to be considered. In this way the algebra can become much more challenging, but the basic 
ideas can all be applied. For an application of this to the Kovalevskaya top see 126,251. 

7.2. Non-Hamiltonian systems 

The application of W-sections to dissipative flows (e.g. in R3) is straightforward. Assume 
there exists a finite trapping region, i.e. a volume Lr on whose boundary the vector fjeld is 
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transverse and pointing inward. A W-section is then considered inside this volume. Any 
function of the phase space variables, especially just one of the variables itself, now is a 
candidate for W .  For dissipative flows on iR3< C-completeness for the inverse map cannot 
be achieved by our construction, but for these systems the time reversed dynamics is usually 
not considered. The discussion of the effect of periodic orbits in A has to be extended, 
because in section 4 we only covered the Hamiltonian case. 

As stated in the beginning, it is impossible to get an ideal section. Besides the given 
topological argument, in the dissipative case this is most obvious if the flow has at least 
one equilibrium point x' in D3. If x* $ C then it is not &-complete; if x* E C then it is 
not transverse because of ( ( x " )  = 0. Note that by construction a W-section contains all 
the equilibrium points. Choosing coordinates on C is usually much simpler for a flow in 
U c R3, since we typically do not get closed surfaces, if we intersect C with U, but instead 
often just D2. 

An almost trivial example is given by differential equations with one linear component: 
x = F ( x ,  y ,  z ) ,  9 = C ( x ,  y .  z ) ,  i = ~ r r X  + b y  + cz + d. Assume that the flow is pointing 
inward on a sphere, which is the surface of a sufficiently large ball. The section condition 
now is S = z = ax +by + cz + d = 0, which is a plane in phase space and the intersection 
with the ball inside the sphere gives a disk 0'. Since one of a, b, c is non-zero, (assume 
c # 0) we take x and y as coordinates on C. Similarly if i is at most quadratic the section 
becomes a quadric in R3. 

8. Conclusions 

Our aim was to construct complete sections for Hamiltonian systems with two degrees of 
freedom. The method of W-sections can be of great practical use for this purpose, as we 
have shown in the examples. 

First, we have given some negative results by showing that there can be topological 
obstacles. If the energy surface is S3 there does not exist a globally transverse section. 
Moreover, we have shown that for systems with time reversal symmetry there can never 
exist a time symmetric transverse setion with only one component. Thus this leads to the 
discussion of non-transverse sections. 

Non-transverse sections can suffer from three types of discontinuities, related to the 
properties of the tangent set Q. If the tangent set is invariant under the flow and the periodic 
orbits in this set are winding, one is lead to the type of sections that were introduced by 
Birkhoff. If the tangent set contains non-winding orbits andor non-invariant components 
the PoincarB map becomes discontinuous. If the section is not even Em-complete, there can 
be a fractal set of singularities in PT-That the discussion of these discontinuities has not 
been a topic in the literature so far seems to be due to two reasons. The section conditions 
are often obtained by symmetry considerations, which naturally yield an invariant tangent 
set being an elliptic periodic orbit, and therefore Birkhoff sections, which is the best one 
can hope for in general; the second reason is that looking at a PoincarB section does not 
necessarily show the difficulties arising from discontinuities, which are resmcted to a set 
of measure zero. Only the investigation of the return time clearly shows the smoothness 
properties of the Poincar€ map, as was illustrated in the examples. 

Of course, one should always try to obtain smooth Poincar.6 maps, i.e. ideal or Birkhoff 
section. Our new method of W-sections can be of help in finding these favourable sections. 
We have demonstrated this by generating an ideal section for a particle in a periodic magnetic 
field with a small periodic potential. For Birkhoff sections we have discussed well known 
systems and found a smooth section for the quartic potential that has not been used in the 
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literature. 
If there is no symmetry in the problem, and therefore no explicitly given periodic 

orbit, it can be practically impossible to obtain a Birkhoff section, even though it might 
exist in principle. Taking these difficulties into account, we end up restricting attention to 
the main property demanded of a section in practical applications, which is (asymptotical) 
completeness, where (asymptotical) &-completeness is more important, because it implies 
V'-completeness. 

We have shown that our method of W-section automatically generates sections that are 
asymptoticdly complete. The main idea was to consider a signal W ( W ( x ) )  which must 
be a bounded quantity, and to take its time derivative (i.e. the extrema of W ( V ( x ) ) )  as a 
section condition. The resulting section is asymptotically complete, because the limit sets of 
orbits with infinite. return time are in the invariant tangent set. Depending on the properties 
of the tangent set we distinguish five types of W-sections. 

There are a number of standard choices for W-sections from which the zero-force, 
velocity, and acceleration type are illustrated in the examples. If there are non-winding 
orbits in the invariant tangent set, the section is only asymptotically complete. This 
rather unpleasant possibility is also illustrated in the examples, but our ultimate goal is 
the construction of complete W-sections. Then the induced Poincar€ map never has infinite 
return time r .  There is a discontinuity arising from the non-invariant part of the tangent 
set. This type of discontinuity with a finite jump in r does not disturb the appearance of 
the section, because the continuity of the Row in phase space ensures that (e.g. KAM) tori 
crossing this discontinuity nevertheless are smooth. This type of complete W-section has 
been applied to the double well, the double pendulum, and a modified quartic potential. 
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